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Abstract 

This thesis is focused on explaining the thermochromic (color change with heat) 

properties of fabric dyed with the indigo derivatives 6-bromoindigo (MBI) and 6,6’-

dibromoindigo (DBI).  MBI- and DBI-dyed textiles change color upon heating from violet to 

blue and from purple to red, respectively.  To quantitatively evaluate changes in fabrics’ shades 

we used reflectance spectra analysis.  The technique of shining a beam of light onto the fabric 

and recording the wavelength of light which was reflected allowed us to objectively record the 

color transformation.  There is no current theory which can predict fabric color based on 

molecular structure of the dye and fabric; neither is there an explanation for the unique trends in 

color change upon heating.  In order to observe molecular behavior with transmission electron 

microscopy (TEM), we dyed carbon nanotubes as fabric surrogates.  TEM images of dyed 

nanotubes revealed certain patterns.  DBI and MBI molecules form aggregates of particular sizes 

on the nanotubes, which seem to correspond to particular reflected colors.  We believe that 

change in fabric color after heating is related to the change in size of the aggregates on the 

nanotubes.  Preliminary results show that smaller aggregates reflect blue light and larger 

aggregates reflect red.  Thus, MBI-dyed cloth contains mostly small aggregates alongside some 

large aggregates to give fabric a violet color; and after heating, large particles are converted to 

small, thus the color becomes bluer.  On the contrary, DBI-dyed material starts off with larger 

aggregates and a few smaller ones for a purple tone, but after heating we can see more large 

particles, which parallels with reddening.  Understanding interactions between molecules will 

allow us to manipulate fabric hues.  The successful outcome of the project can find broad use in 

the fashion industry by improving efficiency of textile coloring and bringing unique shades to the 

market. 
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1. Introduction 

1.1. History of indigoids and modern use 

The art of dyeing developed during the Neolithic Era, earlier than 10,000 BC [Barber et 

al., 1991].   With the emergence of the variety of textiles the craft of dyeing became a common 

practice; however, the profession of a dyer posed health risks and was not socially favorable 

since it involved working with toxic or disagreeable substances like urine [Robinson et al., 

1969].  Yet the desire to profit on colored textiles drove searches for new shades nature had to 

offer. Blue dye became available lats, during the 4th century BC [Bongioanni et al., 2003], since 

blue is a rare color in nature [Głowacki et al., 2012].  The source of this unique dye became 

Indigofera genus plants, thus the name “indigo” is used to describe a deep blue hue [Waring et 

al., 1990, Wisniak, 2004].  During the 1600s BC, indigo and its derivatives, 6-bromoindigo 

(indigo with one bromine atom attached) and 6,6’-dibromoindigo (indigo with two bromine 

atoms attached), were found in gland secretions of Murex brandaris and trunculus mollusks. The 

mixture of these molecules on fabric produced a vibrant purple color [Koren, 2005].  The rare 

purple-violet shades obtained from these sea snails became the privilege of royalty and was 

named Tyrian purple or Royal purple thereafter.  German chemist Paul Friedländer was the first 

to discover that 6,6’-dibromoindigo was the main component of Tyrian purple in 1909 

[Friedländer, 1909].  As the dyeing industry evolved and technological advancements allowed 

for commercial manufacturing of organic colorants, indigo, synthesized in laboratory, still 

remained the main source of blue hues for fabric coloring and blue jeans dyeings.    

Modern dye manufacturing offers a wide variety of colored fabrics.  And with expansion 

of the fashion industry the demand for new hues and patterns is evolving daily.  Purple was 

named “the reigning color of the season” of autumn/winter 2012-13 by Vogue [The Power of 
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Purple, 2012].  However, as the seasons change, the designers are urged to find new trends and 

colors to satisfy the “wandering eyes” of modern fashionistas.  We believe that indigo 

derivatives 6-bromoindigo (monobromoindigo or MBI) and 6,6’-dibromoindigo (dibromoindigo 

or DBI) could be the new fashion “it”.  The intriguing properties of these dyes are the tendencies 

to change color upon dilution and heating.  Strangely enough, indigo itself does not change color 

upon reduction of dye concentration or boiling.  Coloring fabric in a dilute dyeing vat with 

monobromoindigo or dibromoindigo produces a range of blue shades.  Yet during 

thermochromic (color change with heat) studies, the MBI-dyed fabric turns blue in hot water, 

while DBI-dyed fabric becomes reddish after similar treatment.  As a result, using these dyes, we 

can produce fabric with hues varying from dark blue to purple-red, which could greatly benefit 

textile manufacturers worldwide.  Moreover, the dynamic property of MBI- and DBI-dyed 

fabrics could give the consumer more flexibility in choosing a desired shade by simple 

application of heat.   

Currently, there is no clear explanation for the thermochromicity of fabrics dyed with 

MBI and DBI.  Thus, in the course of our research, we investigate the molecular interaction 

pattern which could account for the thermochromic phenomenon.  We suggest that dye 

molecules form microscopic aggregates on fabric, which determine the visible color.  This 

conclusion was drawn from the reflectance analysis of dyed fabric, where we trace changes in 

the minima of reflectance curves, and correlate these with changes in the sizes of particles on the 

microscopic level.   Since textile threads were too large for microscopy studies, we used 

nanotubes (folded carbon sheets) as fabric surrogates.  Understanding the types of interactions 

arising between dye and fabric molecules can allow us to manipulate hues of heated fabrics and 

learn how to predict a fabric color based on dye structure prior to dyeing. 
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1.2. Dyes and color background 

Figure 1 
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Chemical structures of indigoids 

 

The structure of indigo (Figure 1) was proposed by Baeyer in 1883 and confirmed by 

Von Eller [1955] via X-ray crystallography.  And the visible signature blue color of indigo was 

explained by Christie using Molecular Orbital (MO) theory [Christie, 2007].  We obtained the 

basis for our dyeing procedure and hints on unique molecular properties of MBI from research of 

the leading explorers of indigoids: Robin Clark and Christopher Cooksey.  These scientists link 

association of dye molecules into aggregates on fabric with MO explanation of electronic 

behavior, which accounts for the visible color of MBI-dyed fabric [Clark and Cooksey, 1999].   

According to the MO theory [Fukui, 1952], energy required to promote an electron from 

the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO) depends on the distance between the orbitals and is mathematically represented by 

Planck’s relationship ΔE = hc/λ (where ΔE is the energy required to promote an electron, h is 

Planck’s constant, c is the speed of light and λ is the wavelength of the absorbed light by the 

electron).  The visible-light wavelengths vary from 380 to 750 nm in the electromagnetic 

spectrum.  Red-colored light has long wavelengths and is therefore low in energy, while blue has 

short wavelengths, and is high in energy (Table 1). 
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Table 1 

Wavelength of Maximum Absorption (nm) Color Absorbed Color Observed 
470-500 Blue-green Red 
500-520 Green Purple 
520-550 Yellow-green Violet 
550-580 Yellow Violet-blue 
580-620 Orange Blue 
620-680 Red Blue-green 

 

The HOMO-LUMO gap in indigo is relatively small, thus, only low energy red light is 

required to excite an electron to the higher orbital.  As the red light is absorbed the 

complimentary blue color is reflected and is visible to the viewer.  The relatively small HOMO-

LUMO gap is due to a particularly stable lowest unoccupied molecular orbital because of the 

conjugated system of π electrons.  The benzene rings’ π electrons are connected via a “cross-

conjugated” ethene bridge, which also enables communication between two electron donor 

groups (NH) and two electron acceptor groups (C=O).  Such a configuration is referred to as the 

H-chromophore [Klessinger 1966, Luettke and Klessinger 1964, Luettke el al 1966].   

Furthermore, Clark and Cooksey emphasize that hydrogen bonding between dye molecules has 

an effect on the fabric color.  They suggest that indigoid molecules interact with each other so 

that molecules which are a certain distance from one another, form dimers and higher polymers.  

The calculated distance between 6,6’-dibromoindigo molecules appears to be smaller than 

between indigo molecules, possibly because of the van der Waals attraction (a type of 

intermolecular attraction) between bromine atoms [Clark and Cooksey, 1999].  These stacking 

patterns supposedly play a role in stabilizing the LUMO, thus affecting the reflected color.  

Observing the change of fabric hues from indigo (blue) to MBI (violet) to dibromoindigo 

(purple), it appears that addition of bromine atoms to the indigo molecule destabilizes the LUMO 

and widens the HOMO-LUMO gap.   



9 
 

There is a physical as well as a chemical explanation for color change.  We suggest that 

visible color of fabric dyed with indigo derivatives could be due to the structural effect.  As the 

observed uneven surfaces or particles (dye aggregates) become extremely small, light waves 

reflect at different angles producing interference, which in combination with refraction accounts 

for an iridescence effect.  In this case, the surface geometry determines how the light scatters.  

We suspect that hues appearing on textiles dyed with indigo, MBI and DBI might be explained 

by structural coloration, as the aggregates we observe by TEM (transmission electron 

microscopy) are smaller than the wavelengths of the light being shined on them.  If the properties 

of the reflected light depend on the type of aggregation, than we can relate observed fabric color 

to physical behavior of the dye.    

 

2.  Results and discussion 

2.1. MBI synthesis 

MBI was prepared according to the procedure of Clark and Cooksey [1999].  Although 

we followed this procedure precisely, our attempts resulted in higher yield than that reported in 

the paper.  During the first two efforts of synthesizing MBI, Baruch student Olga Lavinda and 

my mentor Dr. Ramig have obtained 55% and 40% yields, which were significantly greater than 

Cooksey’s report of 20%.  Dr. Ramig and I have repeated the experiment to confirm a higher 

yield of MBI (53%). The basis for the discrepancy between Cooksey’s and our yields is not 

known. 
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2.2. Dyeing procedure modification 

It is known that indigoids are poorly soluble in water, and for dyeing purposes, they first 

have to be converted to a water-soluble form called “leuco” or colorless (soluble form of 

indigoids, Scheme 1).  The molecule, in “leuco” form, carries positive and negative charges, 

which are attracted to the surface of the fabric if it’s polar. The dyeing procedure was employed 

from Clark and Cooksey [1999] and improved to obtain more consistent results.  Later it was 

found that Cooksey [2005] had modified his original DBI-dyeing procedure so that we matched 

closely the conditions he used. 

Scheme 1 
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The following steps were taken in the process of modification. 

2.2.1. Analysis of the influence of UV light 

As indicated in the literature during the “leuco” formation, the exposure of the dyeing vat 

to UV light debrominates indigoids [Van Alphen el al., 1944, Voss et al., 2000, Hoffman et al., 
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2010 and Driessen, 1944] (Schemes 1 and 2).  However, Cooksey and Sinclair [2005] have noted 

that the leuco form of DBI does not undergo debromination under room lightning.  To probe 

conditions leading to debromination, my mentor with Olga Lavinda, exposed MBI “leuco” to 

fluorescent light overnight prior to dyeing.  Blue-colored fabric indicated loss of the bromine 

atom from the MBI molecule. 

 

Scheme 2 
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  To quantify the room-lightning influence, we collected Nuclear Magnetic Resonance 

(NMR) spectra for indigo, monobromoindigo and dibromoindigo by converting the indigoids to 

the soluble N,N’-bis(trifluoroacetyl) derivative  (DBI is shown in Scheme 3) [Gibbs et al, 1995].  

The NMR images of indigo, MBI and DBI were used as a reference in room-light-effect 

investigations (See Appendix A).  To observe whether debromination occurs, we converted MBI 

to “leuco”, and without adding the fabric, we left it to stir under fluorescent light for the time of a 

three-pass dyeing.  Afterward, the “leuco” was exposed to air and reformed insoluble dye 

particles were suction filtered; plus, the filtrate was evaporated under reduced pressure to recover 

more dye.  The regained dye was prepared for NMR analysis by the trifluoroacetylation reaction 

mentioned above. 
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Scheme 3 
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MBI and DBI spectra showed a distinct peak in the region from 8.2 to 8.4 ppm, while the 

indigo spectrum did not show this important feature.  Analysis of the MBI sample, which had 

undergone “leuco” formation under room light, gave inconclusive results.  Although, the 

spectrum had peaks in the region from 8.2 to 8.4ppm, we could not determine whether 

debromination occurred on some molecules of the sample.  Moreover, we attempted to 

characterize the processed MBI by 19F NMR which seemed to be a promising technique (See 

Appendix B), but as standard samples were collected for indigo, MBI and DBI, an NMR 

apparatus malfunction prevented us from completing the analysis.   

Since we observed that the colored fabric, produced during the time span of a normal 

dyeing (a few hours) under fluorescent light, showed the same colors as fabric dyed with 

protection from room lighting, we decided to perform future experiments without protection 

from light in order to be able to observe closely any color changes or other phenomena that 

occurred during the dyeing. 
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2.2.2. Temperature effect 

Before I joined the project, Lavinda and Ramig in unpublished results had tested the 

effect of temperature at which dyeing was carried out, on fabric colors.  First, they dyed fabric at 

room temperature: 

DBI dyeing at room temperature (22-23 oC) 

The dyeing was made at half the scale of the original procedure by my mentor and his 

research team, where the “leuco” was prepared at 50 oC.  Before the fabric was introduced, the 

flask was cooled down to room temperature.  Developed multifabrics cloth had very faint colors, 

while some fabrics weren’t colored at all.  Besides, upon the procedure completion, the dyeing 

vat was exposed to air to precipitate insoluble dye (Scheme 1).  The vat solution turned dark 

blue, indicating a large amount of residual dye.  They concluded that decreasing dyeing 

temperature yields poor results.  As I became a part of the research crew, we repeated 50 oC 

fabric dyeing, however, this time we increased the temperature at which “leuco” was formed.  

This is detailed in the following section. 

DBI-dyeing at 50 oC 

The “leuco” was formed at reflux (77-78 oC) and cooled to 50 oC for multi-strip coloring.  

Dyed fabrics presented faded colors and unevenly distributed dye (Figure 2), and the post-dyeing 

vat contained many blue particles. Attempts to reproduce this dyeing gave unsatisfactory results, 

as the colors differed each time, possibly due to the varying amounts of dye on the fabric.  We 

will show in Section 2.4 that the colors of the dyed fabrics depend strongly on the concentration 

of the dye, in the cases of MBI and DBI. 
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Figure 2 

DBI 

1st pass 2d pass 3d pass 

 

Multi-fabric strips dyed with DBI at 50 oC 

 

To increase efficiency of coloring, we carried out the entire procedure at elevated 

temperatures (77-78 oC).  This is described below. 

Dyeing at reflux with all three dyes (77-78 oC) 

The “leuco” formation and dyeing both took place at reflux. We have obtained richly 

colored fabrics (Figure 3).  After the third pass at reflux the vat did not contain any blue particles 

after exposure to air, indicating optimal dye adherence to the material. Later, we discovered that 

Cooksey and Sinclair [2005] performed their DBI dyeings at reflux as well; however, unlike in 

our experiment, they used excess (2 g) dithionite (Na2S2O4) reagent and concentrated ammonia 

solution (7 mL) to convert the dye to “leuco,” diluting the solution with water after. This differs 

slightly from our procedure (see Experimental Section), butthe two procedures would be 

expected to give the same colors. 
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Figure 3 

 

Indigo (top) vs. MBI vs. DBI (bottom) dyed at reflux 
13 fabrics on each horizontal strip. From l to r: wool, viscose, polypropylene, silk, orlon, nylon, dacron 64, 

dacron 54, creslan, cotton, triacetate, modacrylic, diacetate. 
 

To obtain consistent results, all dyeings with indigo, MBI, and DBI were carried out 

under fluorescent room lighting and at the reflux temperature according to the new procedure. 

 

2.3. Effect of fabric structure on visible color 

We have conducted a thorough analysis of dyed fabrics to trace how fabric structure 

influences visible hues.  Expecting that materials similar in polarity would display the same 

shades, we compared fabrics with similar backbones and polarity.  It appears that some fabrics 

exhibit more intense colors than others, and shades of purple and violet vary irrespective of 

fabric functional groups.  This tendency was explained by Cooksey and Sinclair [2005], who 

suggested that the “leuco” form of indigoids is strongly attracted to a fabric’s polar functional 

groups by hydrogen-bonding, ionic, polar and nonpolar interactions.  As the dye in “leuco”, or 

charged, form is applied to the fabric, the molecules interact with fabric and with each other. 

When the indigoids are oxidized back into insoluble form, the attraction between dye molecules 

prevails over substrate-molecule attraction, creating dye aggregates.  Textiles which appear bluer 

have stronger dye molecule-fabric interaction, while materials with violet hues have more dye 

aggregates.  Nylon has a stronger attraction to dye molecules than wool, thus nylon appears bluer 
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(Figure 4 and 5).  While in wool, the attraction of colorant’s molecules to each other is greater 

and the fabric looks violet.  It seems that dye aggregations reflect light in a different manner than 

single molecules, uniformly distributed over the fabric.  As a result, we see redder shades on 

fabrics with particles and bluer on evenly allocated colorant.  While Cooksey and Sinclair do not 

provide direct evidence of dye aggregation, we confirm dye spatial accumulation by electron 

microscopy during our study.  

Figure 4 illustrates the structural composition of various fabrics.  Since indigo-dyed 

fabrics vary in the intensity rather than the shade of the blue color, we did not focus our attention 

on indigo-dyed textiles.  MBI- and DBI-dyed materials vary in shade from blue to violet and soft 

pink to bright burgundy respectively.  It appears that addition of bromine to the blue indigo 

molecule tilts fabric hues towards red: monobromoindigo-dyed materials look more violet and 

dibromoindigo-dyed cloth obtains distinct reddish tones.  We can see that cotton, viscose, 

diacetate and triacetate consist of glucose backbone with polar functional groups, yet color 

shades vary irrespective of fabric’s structural similarity.  The separation is more obvious in the 

next example, where textiles such as wool and silk, which consist of amino acid chains, are 

colored in remarkably different shades.  
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Figure 4 

 
Fabrics’ structures correlated to the visible colors 

 

Similar analyses were applied when examining the next set of fabrics (Figure 5).  

Synthetic textiles with identical functional groups like modacrylic and creslan, containing the 

nitrile group ( C N), express a wide range in color, particularly visible in MBI and DBI 

dyed fabric.   

Figure 5 

 
Fabrics’ structures correlated to the visible colors 
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While looking at fabrics exceptionally distinct in structure like cotton and polypropylene 

side by side, we can mistake one for another after dyeing (Figure 6).  

 

Figure 6 

 

Fabric’s structures correlated to the visible colors 

 

From the observations above, we can conclude that visible hues depend mainly on 

arrangements of dye molecules with respect to each other and not heavily on functional groups 

of the textiles.  This conclusion was reinforced by observations of fabrics after brief boiling in 

water (Figure 7), where fabrics changed color irrespective of their structural composition.  Using 

an example of fabrics with an amino acid backbone, like wool and silk, we observed that MBI-

dyed silk changed color to blue-green, while MBI-dyed wool acquired the deep blue hue.  The 

difference is more prominent in the DBI-dyed cloth, where wool changes to bright red and silk, 

to soft pink.  
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Figure 7 

Fabric 
MBI before 
heating (left) 
after (right) 

DBI before 
heating (left) 
after (right) 
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modacrylic 
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Multi-fabric strips color change upon heating 

2.4. Dilution effect 

It has been mentioned in the literature that MBI- and DBI-dyed wool [Koren, 2005] and 

silk turn blue as the dyeing vat becomes less concentrated with colorant [Cooksey, 2005].  Since 

indigo-dyed fabric did not show color change, we focused on studying MBI- and DBI-dyed 

textiles.  The proposed explanation of bluing upon dilution is that dye molecules form dimers or 

higher polymers and undergo self-association to form dye particles [Cooksey 2005] once in a 

highly concentrated solution.  However, when dimers have not been formed, solo molecules of 

dye adhere to the fabric and reflect the blue light.  This theory was formulated in the absence of 

direct physical evidence of dye aggregation. 
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To extend the study of color change upon dilution, we have performed a series of 

experiments on other types of fabrics as well as repeated silk and wool dyeings.  During the 

procedure a cloth of fabric was introduced to the dyeing vat and removed after 15 min which was 

followed by the next piece of cloth and the third to exhaust the dyeing vat.  Each addition of the 

fabric to the vat is referred as a “pass.”  We have found that a standard dyeing vat at reflux 

sustains three passes. After coloring multi-fabric strips as well as silk and wool cloths separately, 

we found that material bluing is consistent across all textiles in the 3-pass dyeings.  Furthermore, 

we concluded that bluing occurs irrespective of the dye used: MBI or DBI (Figure 8).  

Figure 8 

MBI  
From left to right:  
1st pass, 2d pass, 3d pass 

DBI 
From left to right:  
1st pass, 2d pass, 3d pass 

  

Bluing effect upon dilution 

  To quantitatively evaluate the bluing effect across passes, our collaborators Hiroko Ajiki 

from Hunter College and Federica Pozzi from The Metropolitan Museum of Art performed 

reflectance spectra analysis on all types of fabrics from all three passes.  A similar, less extensive 

study has appeared recently [Koren, 2012].  That study employed fabrics dyed by Ramig and 

Lavinda, and were used by Koren without their knowledge or consent.  The fabrics analyzed had 
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been prepared by one of the low-temperature inconsistent methods reported in Section 2.2.2.  

Thus, the conclusions of that study should be regarded with circumspection.   

The first pass of the MBI-dyed Orlon (Figure 9, black line, MBI 1) shows a peak at 610 

nm and a small shoulder extended in the lower 500s region on the reflectance graph.  A 

minimum in a certain region indicates that most of the light was absorbed and the reflected 

wavelength is the observed color.  In this instance, minimum in the region of 600 nm 

corresponds to a reflected blue light and extension to 500 nm corresponds to violet (refer to 

Table 1).  The second pass (red line) has a minimum at 600 nm and the shoulder in the 500s is 

much smaller indicating that we will see less of the red hues.  And in the third pass (blue line), 

the graph is almost symmetrical with a sharp minimum at 610 nm, which is consistent with the 

observed color: bluing upon dilution. 

Figure 9 

 

Reflectance spectrum of the MBI-dyed orlon from a multi-fabric strip 

MBI 1 – first pass, MBI 2 – second pass, MBI 3 – third pass and MBI heated – boiled fabric 
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In another example, where DBI-dyed cotton has been analysed (Figure 10), we can find a 

minimum in the lower 500s with a shoulder extending to the 600s in the first pass (black line, 

DBI 1) consistent with a violet color.  However, in the second pass (red line), the minimum 

shifted to 600 nm and a shoulder remained in the higher 500s.  This valley modification 

corresponds to a blue change.  The third pass (blue line) exhibits a broad minimum in the region 

from the higher 500s to the lower 600s, agreeing with violet-blue color of the dyed cloth.  See 

Appendix C for the rest of the spectra of the other fabrics. 

Figure 10 

 
Spectrum of the DBI-dyed cotton from multi-fabric strip 

DBI 1 – first pass, DBI 2 – second pass, DBI 3 – third pass and DBI heated – boiled fabric 
 

 

As Cooksey noted, dye molecules form polymeric aggregates on fabric in highly 

concentrated solution, which affect the reflected color.  We suggest that the size and the shape of 

these aggregations possibly play a key role in visible fabric color.  Thus, as less dye is available 

for polymer formation, molecular aggregates become smaller.  Small dye particles seem to be 
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responsible for the blue color, while larger species reflect light with longer wavelengths in the 

“red” regions.   

 

2.5. Thermochromic studies 

The tendency of MBI-dyed material to change color after boiling, which is referred to as 

a thermochromic property, has been noted previously [Ziderman, 2004].  We have extended the 

MBI study to other fabrics and also examined the color change of DBI-dyed fabrics upon 

heating. Also, we have noted that indigo-dyed textiles did not change color greatly upon heating; 

therefore, we used indigo dyeings as a control in subsequent studies. 

Ziderman [2004] has noted that MBI-dyed wool changes color towards blue when boiled.   

During our experiments, we found that other fabrics colored with monobromoindigo change hues 

towards blue when heated in water.  However, as proposed by Lavinda and Ramig [Lavinda et 

al., 2013], the testing of this property on DBI-dyed textiles showed an opposite trend.  Contrary 

to MBI-colored materials, DBI-dyed fabrics turned redder.  Such intriguing behavior encouraged 

further study of thermochromic property of indigoids.   

 

2.5.1. Solvent effect 

 First, we examined the solvent effect: whether the color change is an inherent property of 

dye molecules or rather is influenced by surrounding conditions.  We heated dyed fabrics by 

different means: dry heat, boiling in a non-polar solvent, and boiling in water.   Ziderman [2004] 

noted that when dry pure violet MBI is sublimed (solid converted to vapor by application of dry 

heat) and re-deposited (converted back to solid from vapor), it changes its color to blue.  

However, Olga Lavinda and Dr. Ramig found on the contrary that crystals of MBI, heated to 200 
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oC (sublimation temperature of dye) do not change their color [Lavinda et al., 2013].  A 

relationship between the color change of sublimed and re-deposited dye crystals (if that color 

change can be verified) and fabric color changes, which occur even as low as 60 oC in water, is 

unlikely, given the extreme temperature differences.  To study the dry heat effect further, we 

inserted MBI-dyed wool into a heating oven at 100 oC overnight.  The wool strip of cloth did not 

show any color change.  In addition, we observed unusual bluing of MBI- and DBI-dyed fabric 

when placed onto a hot plate at 250 oC.  We suspect that extreme temperatures decomposed the 

dye molecules as well as the fabric, causing appearance of a bright blue color. 

Next, the wool dyed with monobromoindigo was boiled in the non-polar solvent toluene 

(Figure 11) for 15 minutes.  It appeared that this solvent partly removed dye from the fabric, as 

evidenced by a violet coloring of the solvent, but did not change the shade of the cloth. 

 

Figure 11 

 

Toluene 

   

However, when the fabric was boiled in water, in which the dye is completely insoluble, we 

could clearly observe the color change and none of the dye was removed from the fabric.  Thus, 

from the solvent observations, we conclude that water plays an integral role in expressing the 

thermochromic properties of MBI- and DBI-dyed materials, but color change is not an effect of 

solvation of the dye molecules.  



25 
 

2.5.2. Analysis of dyed, heated multi-fabric strips 

In the course of heating different fabrics, we tested the significance of time of water 

contact with the fabric.  MBI-and DBI-dyed silk placed in hot water for 15 seconds and 10 

minutes did not show any difference in their shades.  As stated above, the heated MBI-dyed 

multi-fabric strips turn bluer, while heated DBI-dyed multi-fabric strips turn redder (Figure 7).  

Turning to the other fabrics, it is evident from the MBI-dyed cotton reflectance spectra that the 

first pass (black graph) has an absorption maximum at 540 nm with a large shoulder in the mid-

600s, which accounts for the violet (red + blue) shade, but the first pass after heating (pink 

graph) showed different values: minimum shifted to the lower 600s and a small shoulder 

remained in the upper 500s, indicating fabric bluing (Figure 12). 

Figure 12 

 
Spectrum of the MBI-dyed cotton from multi-fabric strip 

MBI 1 – first pass, MBI 2 – second pass, MBI 3 – third pass and MBI heated – boiled fabric 
 

Proceeding to DBI-dyed cotton spectra we can observe different behavior (Figure10): the 

first pass (black line) had a minimum at 510 nm and a long shoulder in the lower 600 nm range, 
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while the graph for the heated first pass (pink line) obtained a more symmetrical shape with a 

minimum at 510 nm.  This valley shift implies the change of fabric color from lilac to purple-red.  

To follow up on Ziderman’s MBI-dyed wool experiments, we closely analyzed wool 

dyed with MBI and DBI.  The first-pass spectrum of the MBI-dyed wool (Figure 13, black 

graph) displayed a minimum at 530 nm and a long extension to the middle 600s, corresponding 

to the violet color.  After heating, the first pass of wool turned dark blue and the reflectance 

graph changed in shape accordingly (pink line):  a deep protuberance in the lower 600s which 

broadly extends to the upper 500s.   

 

Figure 13 

 
Spectrum of the MBI-dyed wool from multi-fabric strip 

MBI 1 – first pass, MBI 2 – second pass, MBI 3 – third pass and MBI heated – boiled fabric 
 

Moving on to the first-pass spectrum of the DBI-dyed wool (Figure 14, black line), we 

can observe that the graph greatly resembles the first-pass spectrum of the MBI-dyed wool 
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(Figure 13, black line).  However, the spectrum of heated DBI-dyed wool (Figure 14, pink line) 

exhibits a reverse shift in valley from boiled MBI-dyed wool:  the minimum migrated to 520 nm 

and lost its “blue” shoulder.  The contrasting valley-shifts parallel the fabric color change: MBI-

dyed wool changed to blue and DBI-dyed wool changed to red.     

 

Figure 14 

 
Spectrum of the DBI-dyed wool from multi-fabric strip 

DBI 1 – first pass, DBI 2 – second pass, DBI 3 – third pass and DBI heated – boiled fabric 

 
These trends are representative of all the dyed fabrics.  The spectra for the others can be 

found in Appendix C. 

2.5.3. Analysis of dyed silk 

Lastly, we performed all-silk dyeings where the trends were the most noticeable to the 

naked eye (Figure 15).   
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Figure 15 

 
 

Three-pass silk dyeing with indigo (left column), MBI, (middle column), and DBI (right column). Top to bottom: 
1st, 2nd, 3rd passes; insets are heated. 

 

Returning to indigo, we can see that the indigo-dyed first pass cloth did not change color 

markedly after boiling.  Looking at the indigo reflectance spectra (Figure 16), we can see that the 

graphs of non-boiled textile (black line) and boiled (red line) practically overlap, representing no 

change in visible color.  Since indigo does not show any thermochromic properties we did not 

analyze it further. 

Figure 16 

 
Spectrum of the indigo-dyed silk 

Indigo 1 - first pass and Indigo 1 heated – boiled fabric 
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The first pass of the MBI-dyed silk shows a rich violet color and correlated with the black 

graph (Figure 17), where the minimum is at 520 nm and a broad shoulder is in the lower 600s.  

But the boiled first pass (red line) demonstrates diminished extension in the 500s and heavier 

graph augmentation in the middle 600s.  The “red” to “blue” shift is even more prominent on the 

spectra of the second pass (unheated MBI-dyed silk’s second pass – blue line, heated – purple 

line), where the valley of the second pass before heating moved to the region of longer 

wavelengths, after the material was heated. 

Figure 17 

 
Spectrum of the MBI-dyed silk 

MBI 1 – first pass, MBI 1heated – first pass boiled, MBI 2 – second pass, MBI 2 – second pass boiled and  
MBI 3 – third pass, MBI 3 heated – third pass boiled 

 
 

In the spectra of the DBI-dyed silks (Figure 18) we can see a minimum of the first pass at 

530 nm (black line) and a clear shoulder at 610 nm, yet after boiling, the shoulder disappears and 

the graph looks symmetrical (red line), indicating loss of silk’s blue shade.   
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Figure 18 

 
Spectrum of the DBI-dyed silk 

DBI 1 – first pass, DBI 1heated – first pass boiled, DBI 2 – second pass, DBI 2 – second pass boiled and  
DBI 3 – third pass, DBI 3 heated – third pass boiled 

 
 

2.5.4. MBI/DBI mixed dyeings  

To compare which dye adheres stronger to fabric, and is prevalent during the 

thermochromic studies, we carried out a mixed dyeing experiment, where monobromoindigo and 

dibromoindigo were blended in equimolar amounts for multi-fabric strip coloring (Figure 19).  It 

appears that for some fabrics DBI is dominant, like wool, viscose, polypropylene and cotton; 

which appear purple, while for others, MBI: nylon and dacron 64, which look more violet-blue 

and the rest were an intermediate of the two dyes: silk, orlon, dacron 54, creslan, triacetate, 

modacrylic and diacetate: variations of purple-violet color.   
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Figure 19 

 

MBI-dyed multi-fabric strip (top), hybrid multi-fabric strip (middle) and DBI-dyed multi-fabric strip (bottom). 
 

To examine whether fabric turns redder, because of the DBI, or bluer, because of the 

MBI, after boiling, we’ve collected reflectance data for all fabrics before and after boiling.  Most 

of the textiles remained unchanged like cotton (Figure 20), where the reflectance curve before 

heating (black line) retained its shape after heating (red line).  

Figure 20 

 
MBI/DBI 1 – first pass of cotton dyed with MBI/DBI mixture and MBI/DBI 2 – boiled first pass of cotton dyed with 

MBI/DBI mixture  
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Some fabrics turned slightly redder, like silk (Figure 21).  In the spectrum of MBI/DBI-

dyed silk before heating, we can observe a wide valley in the region from 540 nm to 625 nm 

(black line) corresponding to blue-violet color.  But after boiling, we can see a distinct minimum 

at 520 nm with a small shoulder at 600 nm, which indicated fabric’s reddening.   

 

Figure 21 

 
MBI/DBI 1 – first pass of silk dyed with MBI/DBI mixture and MBI/DBI 2 – boiled first pass of silk dyed 

with MBI/DBI mixture 
 

It appears that for many of these “hybrid” MBI/DBI-dyed fabrics, the blue 

thermochromic effect of MBI and the red thermochromic effect of DBI cancel each other out. 

Other fabrics behave more as if they had been dyed with one or the other dye alone.  The other 

spectra of the hybrid dyeings can be found in Appendix C. 

 

2.5.5. Capturing color in the process of change  

In order to develop a theory of the color changes caused by heat, we decided to look into 

the intermediate state of the thermochromic change.  We performed an experiment where we 
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heated MBI- and DBI-dyed fabrics at 40 oC, 60 oC, 80 oC, and 100 oC.   Surprisingly, heated 

MBI-dyed silk presented an unusual pattern: it became slightly redder at 40 oC and more so at 80 

oC, yet it turned bluer at 100 oC.  Heated at varying temperatures, DBI-dyed silk did not show 

anomalies.  In that case, the color gradually reddened from 40 oC to a final violet-red shade at 

100 oC.  When a similar test was done on MBI-dyed wool, the reddish intermediate was not 

present.  We plan to examine this irregularity using transmission electron microscopy (see 

Section 2.6).  

From the collected spectral data and a hint from the literature [Cooksey, 2005] we 

suspected that visible color is determined by the presence of distinct types of molecular 

aggregates; where aggregates smaller in diameter reflect blue light and those larger in diameter 

reflect red.  Thus, when we detect a color shift from violet to blue for MBI-dyed fabric and from 

purple to red for DBI-dyed fabric, we expect to observe redistribution of dye molecules from 

larger particles to smaller in case of MBI and from smaller to bigger in DBI-dyed cloth.  In other 

words, as MBI-dyed textile gets heated, particles reflecting red color are transformed into blue-

reflecting ones, and the fabric appears less red (more blue), while boiled DBI-colored material 

acquires larger clusters of dye molecules and appears less blue (more red).   

To support the above statement, we formed a collaboration with Dr. Jacopo Samson of 

Hunter College, who attempted to examine dyed textile fibers using transmission electron 

microscopy (TEM), a microscopy technique where a beam of electrons is transmitted through an 

ultra-thin specimen, interacting with the specimen as it passes through and forming an image.  

Since fabric threads were too big for TEM analysis Dr. Samson suggested carbon nanotubes as 

an alternative.  Carbon nanotubes are large sheaths of interconnected carbon atoms folded into a 
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tubular shape (Figure 22), resembling material fibers on a much smaller scale, and therefore 

seemed to be a suitable candidate for dyeings.   

Figure 22 

 

Single-walled (left) and Multi-walled (right) carbon nanotubes 

 

2.6. Nanotube dyeings  

2.6.1. Single-walled nanotube dyeings 

Usage of carbon nanotubes as fabric surrogates was proposed by our collaborator from 

Hunter College, Dr. Samson, who carried out the TEM analysis.  The tubes appear black to the 

naked eye and the color change is not visible.  Alternative to nanotubes, we attempted to dye 

silica gel, which consists of white solid beads.  Presumably, white silica beads would exhibit a 

color change when dyed and heated; however, dye molecules did not adhere to the silica surface 

and further experimentation with silica gel was abandoned.   

The first nanotube dyeing with MBI was carried out by Lavinda and Ramig [Lavinda el 

al., 2013] at 50 oC, according to Clark and Cooksey’s original procedure for fabric dyeing 

[Clark, 1999].  Collected TEM images (Table 2) were analyzed with computer software Image J.  

Obtained data consisted of distribution of dye aggregates sorted by diameter. 



35 
 

 

 

Table 2 

Pictures MBI particles distribution graphs 

 
 

  

From the graph “before heating” we can see a maximum at 13 nm and a supplementary peak at 

27 nm, meaning that the dye particles were predominantly of 13 nm and a good amount of 27 nm 

in diameter.  However, after heating the graph changed its shape: the peak at 27 nm has 

disappeared and a shoulder in the region of 7 nm has emerged.  Correlating the MBI-dyed 

nanotubes data with the fabric color shift, we found that as MBI-dyed fabric changes color from 

violet to blue after heating, the distribution of particles changes as well: larger aggregates 

disappear and smaller ones arise.  The observation of particles’ rearrangement suggested that 

particles of 13 nm in diameter reflect blue light, while particles of 27 nm in diameter reflect red 

light.  As I started to work on the project, we performed a follow up on the first experiment with 

nanotubes, a DBI dyeing.  We predicted that before heating, images of DBI-dyed nanotubes 

would exhibit predominantly small particles matching the bluish color, but after boiling, we will 

observe aggregates larger in diameter, related to the fabric reddening.  The DBI-dyed nanotubes’ 

graph confirmed our expectations.  We found that non-heated DBI-dyed nanotubes showed most 
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particles with diameter 10-11 nm and after heating, we observed more relatively larger 

aggregates (30, 40 and 50 nm, Table 3).  

 

Table 3 

Pictures DBI-dyed nanotubes before and after heating: particles distribution 
graph 

Before heating 

 

 

After heating 

 
 

To strengthen preliminary conclusions, we repeated an experiment with MBI, where 

tubes were dyed at 50 oC, but “leuco” was formed at 77 oC.  “Before heating” MBI aggregates 

were predominantly 15 nm in diameter with slightly increased amount of particles with 35 nm in 

diameter (Table 4).  But after heating, the particles with 35 nm in diameter vanished.  The results 

were consistent with the first nanotubes experiment. 
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Table 4 

Pictures 
MBI-dyed nanotubes before and after heating: particles distribution 

graph 
(“leuco” formed at reflux) 

Before heating 

 

 

After heating 

 

 

The next nanotube dyeing was performed at reflux with DBI dye.  The images of 

nanotubes before heating contained many particles with 20 nm in diameter (Table 5), which 

appeared to be consistent with the first DBI-dyeing; however, after heating, the images showed 

abnormally large particles with diameters from 100 to 700 nm (Table 6).  To explain the 

anomaly of the oversized aggregates, we repeated the experiment with multi-walled nanotubes. 
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Table 5 

Pictures DBI-dyed nanotubes before heating: particles distribution graph 
(“leuco” formed and dyeing took place at reflux) 

  
 

Table 6 

Pictures DBI-dyed nanotubes after heating: particles distribution graph 
(“leuco” formed and dyeing took place at reflux) 
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2.6.2. Multi-walled nanotube dyeings 

For the next set of experiments we used multi-walled nanotubes because their purity 

(>98%) was significantly higher than of the single-walled tubes (40-60%), meaning that half of 

the single-walled nanotubes consist of carbon in random form.  As a control, we analyzed pure 

multi-walled nanotubes with TEM, to ensure absence of any particles on the tubes (Figure 23).  

The images showed many stringy tubular structures (nanotubes) without any black spots. 

 

Figure 23 

 

Multi-walled nanotubes under the microscope 

 

When we analyzed images of non-boiled MBI-dyed tubes, we found the same irregularity 

as in the previously mentioned heated DBI-dyed sample of single-walled tubes.  We saw large 

particles with diameters on the micrometer scale and some nanotubes  embedded in the much 

larger globs of dye (Figure 24). 

Figure 24 

 

DBI-dyed multi-walled nanotubes  
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We have no explanation currently for the appearance of extremely large dye aggregates.  

In an attempt to avoid this, we carried out diluted nanotube dyeings in which we removed 2 mL 

of “leuco” from the vat after we processed the first pass of fabric.  Dye particle distribution of 

the “dilute” nanotubes sample is yet to be determined.  Furthermore, we prepared the following 

samples of the nanotubes, which remain to be analyzed by TEM: 

• DBI-dyed multi-walled tubes  

• Indigo-dyed nanotubes 

• MBI-dyed tubes heated at 40 oC, 60 oC, 80 oC and 100 oC 

• Simulated nanotubes dyeing without any dye (a control experiment) 

• Dilute indigo dyeing: after the first pass 

• Dilute DBI dyeing: after the first pass 

• Dilute MBI dyeing: after the second pass 

• Double MBI concentration dyeing: after the first pass 

• Double MBI concentration dyeing: after the second pass 

 

3.  Conclusion  

We have examined unexplained properties of the natural dyes, monobromoindigo and 

dibromoindigo, which were used during ancient times.  We have concluded that dyeing with 

indigoids at higher temperatures gives richer fabric colors and that short exposure of the dyeing 

vat to fluorescent room light doesn’t affect the final hues.  Thus, we performed our experiments 

using modified dyeing procedure: at reflux and without protection from room lighting.  Studying 

color dependence on fabric structure suggested that the visible color of fabric dyed with MBI or 

DBI is mainly a consequence of dye-dye molecular aggregations, rather than dye-fabric 
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interactions.  Furthermore, we examined the color behavior upon dilution, and upon heating of 

the fabric.  Correlating our findings from the reflectance spectra of dyed fabrics and nanotubes 

analysis, we believe that dye molecules aggregate on textiles into particles of specific size, which 

accounts for the observed color.  Reflectance analysis showed minima shift corresponding to the 

change in color.  Each subsequent pass of MBI- and DBI-dyed textiles displayed minima shift to 

longer wavelengths indicating fabric’s bluing.  While during the thermochromic studies, we 

found that spectra of the MBI-dyed cloth displayed minima change from shorter wavelength to 

longer and spectra for DBI-dyed material showed minima shift from longer wavelength to 

shorter ones.  We correlated these observations with TEM images of dyed nanotubes.  Evident 

from the change in the particles’ size on nanotubes upon dilution and heating, we predict that 

larger aggregates reflect red color and smaller ones reflect blue.  To probe this further, we need 

to complete the analysis of dyed nanotubes under different conditions and look into anomalies 

like MBI-dyed silk’s reddening at 40oC, 60oC and 80oC.   

 

4.  Future work 

To obtain clear support for our hypothesis that color depends on molecular aggregation, a 

number of experiments can be performed.  The nanotubes studies should be continued until a 

consistent trend in molecular aggregation is found.  Furthermore, since nanotubes appear black 

to the naked eye, the dyeings should be carried out with a substance which will exhibit a visible 

color change and will be small enough for TEM analysis.  The reflectance study and TEM 

scanning of one substance will provide strong evidence for or against color dependence on dye 

aggregation state.   
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5. Experimental 

5.1. Chemicals and materials 

DBI was provided by Dr. Sasan Karimi of Queensborough Community College.  It was 

synthesized according to the procedure of Tanoue [Tanoue, 2001]. The DBI purity judged by 

HPLC peak area is 98%. MBI was synthesized in our lab according to the Clark and Cooksey 

procedure [Clark and Cooksey, 1999]. MBI was found by HPLC analysis to be 93% pure.   

Chemicals obtained from Aldrich: 

Indigo (95% pure), CDCl3 (99.8 % D), trifluoroacetic anhydride (≥99%), tetrahydrofuran 

(≥99.9%, inhibitor-free), sodium hydrosulfite (sodium dithionite; technical grade, 85%), Benzoyl 

chloride (99% pure), Toluene (≥99.5% pure), ethyl benzoate (≥99% pure), ethanol (≥99.5% 

pure), phosphorous pentachloride, single-walled carbon nanotubes (40-60 wt % carbon basis, 

DxL 210 nm _ 1-5 μm, bundle dimensions) and multi-walled carbon nanotubes (>98% carbon 

basis, DxL, 6-13 nm x 5-20 μm, bundle dimensions). 

Chemicals obtained from Fisher Scientific: 

NaOH ( 98.1% assay), ammonium chloride (99.03% pure). 

6-Bromoisatin was obtained from TCI and 3-indoxyl acetate (97% pure) from Alfa 

Aesar.  

The 13 fabrics used in the dyeing were obtained as multi-fabric strips (style # 43) from 

Testfabrics, Inc. 

 

5.2. Instrumentation 

TEM data were collected at 200 kV on a Jeol 2100 instrument equipped with EDAX at 

the eucentric height to ensure reproducibility of measurements. 
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Visible reflectance spectra were obtained in dual-beam mode using a Varian Cary 50 Bio 

UV-Vis spectrophotometer equipped with a Barrelino remote diffuse reflection probe by Harrick 

Scientific and a xenon flash lamp. The scan range was 200-800 nm with a maximum scan rate of 

120 nm/s. Spectra of undyed fabrics were taken before each measurement and used as a 

calibration reference.  The data were processed using Cary WinUV and Origin softwares. 

NMR spectra were obtained at 90 MHz in CDCl3 using TMS as reference. 

 

5.3. MBI synthesis procedure (see [Clark, 1999]) 

 

Scheme 4 
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A mixture of 6-bromoisatin (1.0 g, 4.4 mmol) and PCl5 (1.0 g, 4.8 mmol) in 

chlorobenzene (30 mL) was flushed with N2 in a flame-dried 3-neck round-bottom flask, and 

was heated under N2 at 96-102 oC for 4 hours (Scheme 4).  During the heating, the reaction 

mixture changed color from yellow to red-brown.  The mixture was cooled to r.t. and 3-

acetoxyindole (736 mg, 4.2 mmol) was added. The solution was left to stand overnight.  It was 

then diluted with ethanol (30 mL) and suction filtered, washing the wine-red solid with ethanol 

(2x30 mL).   A recrystallization from ethyl benzoate (100 mL) was performed under N2.  The 

mixture was heated at reflux, although complete dissolution could not be confirmed due to the 

very dark color of the mixture.  A dark-violet powder with a metallic luster crystallized upon 
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cooling.  Suction filtration, washing with ethanol (2x30mL),   resulted in 1.52 g (53% yield) of 

product.   

 

5.4. Indigoids preparation for NMR analysis 

To characterize indigo, MBI and DBI by Nuclear Magnetic Resonance (NMR) we 

converted indigoids into the soluble N,N’-bis(trifluoroacetyl) derivative [Gibbs et al., 1995].  The 

refluxing apparatus was assembled with dry 10 mL pear-shaped flask under N2.  MBI (63 mg) 

was mixed with dry CDCl3 (2 mL) and trifluoroacetic anhydride (2 mL), and the mixture turned 

blue.  After 30 minutes at reflux the solution turned wine-red color and was cooled for NMR 

analysis.     

 

5.5. Dyeing procedure 

The dyeing procedure of Clark and Cooksey [1999] was modified.  The dyeing is 

performed in a 250-mL round-bottom flask assembled with a water condenser and swept with 

nitrogen gas throughout the entire experiment.  A solution of distilled water (100 mL), THF (15 

mL) , and NaOH (0.50 g, 13 mmol) is brought to reflux (75-80 °C) and Na2S2O4 (0.50 g, 85% 

purity, 2.4 mmol) is added, followed immediately by finely ground dye (0.050 mmol). A clear 

yellow to yellow-green solution forms, indicating formation of “leuco” (Scheme 1).  After 15 

min, NH4Cl (2 g) is added, followed by 1.4 g of fabric which had been soaked in dilute soap 

solution.  The fabric is stirred in the mixture for 15 min then removed and exposed to air to 

develop the color for 30 min.   Lastly, the strip of cloth is washed in 1% acetic acid solution. 

This constitutes a first-pass dyeing.  Another strip of material (1.4 g) is introduced to the vat 

(second pass) and developed as before, followed by third piece of fabric (third pass), developed 
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in the usual manner.  The flask is exposed to air after the third pass to check for residues of 

insoluble dye in the vat. 

 

5.6. Dyeing of nanotubes 

At first, nanotubes dyeings were carried out at 50 oC.  A sealed 1-dram vial with 30 mg of 

carbon nanotubes was purged with N2 and placed into the water bath.  Next, 2 ml of “leuco”, 

formed in the standard dyeing vat as above, was transferred via syringe into the vial containing 

nanotubes via syringe.  After 15 minutes of dyeing, the tubes were suction filtered and in 30 

minutes washed with 1% acetic acid solution.  After the nanotubes were dried, half of the sample 

was placed in boiling water for 10 min for thermochromic studies.  Later nanotube dyeings with 

the multi-walled nanotubes were performed at reflux in an apparatus consisting of a 15-mL 3-

neck round-bottom flask under N2, fitted with a reflux condenser and magnetic stirring bar. 

 

5.7. TEM analysis 

A suspension of MBI-dyed carbon nanotubes (1 mg) in acetonitrile (1 mL) was diluted by 

a factor of 37 and was sonicated for 30 s. A 8-μL drop of the diluted suspension was placed on a 

300-mesh carbon-coated copper grid (TED Pella Inc., Redding, California,USA) and was 

allowed to dry for 1 min. The excess liquid was removed using filter paper. Energy Dispersive 

X-Ray Spectroscopy analysis (performed by EDAX) confirmed the presence of bromine atoms, 

most likely within the darker areas of the image. These areas represent MBI molecular 

aggregates.  A control sample prepared in the same way in the absence of MBI did not show 

these darker areas in the image. Since a carbon-coated grid was used and carbon nanotubes were 

present in the mixture, the Netcounts method (sample area minus control area) [Samson et al., 
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2011] was not used. As a result, the X-ray scattered lines from the copper grid showed up in the 

background of the spectrum.  In order to avoid solvent effects, later samples of multiwalled 

nanotubes were prepared by loading a dry sample into the grid directly with use of a pipette bulb. 
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Appendix A 

1H NMR spectra 

Indigo, bis N, N’-trifluoroacetyl derivative 
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MBI, bis N, N’-trifluoroacetyl derivative 
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DBI, bis N, N’-trifluoroacetyl derivative 
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MBI converted to “leuco” and oxidized back to solid 
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Appendix B 

19F NMR 

Indigo, bis N, N’-trifluoroacetyl derivative 
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MBI, bis N, N’-trifluoroacetyl derivative 
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DBI, bis N, N’-trifluoroacetyl derivative 
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Appendix C 
Note: number in the name of a series indicates pass (exp. DBI 1 – DBI-dyed fabric, first pass), except for 

MBI/DBI-dyed spectra, where MBI/DBI 1 indicates fabric before heating and MBI/DBI 2 indicated fabric after 

heating.   
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Modacrylic 
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Triacetate 
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Cotton 
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Creslan 
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Dacron 54 
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Dacron 64 
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Nylon 
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Silk 
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Polypropylene 

 

 

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

DBI-dyed polypropylene 

DBI 1

DBI 3

DBI Heated

DBI 2

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

MBI/DBI-dyed polypropylene 

MBI/DBI 1

MBI/DBI 2



81 
 

 

 

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

MBI-dyed polypropylene 

MBI 1

MBI 3

MBI Heated

MBI 2

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

Indigo-dyed polypropylene 

Indigo 1

Indigo 3

Indigo Heated

Indigo 2



82 
 

Rayon 

 

 

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

DBI-dyed rayon 

DBI 1

DBI 3

DBI Heated

DBI 2

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

MBI/DBI-dyed rayon 

MBI/DBI 1

MBI/DBI 2



83 
 

 

 
 

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

MBI-dyed rayon 

MBI 1

MBI 3

MBI Heated

MBI 2

0

10

20

30

40

50

60

70

80

90

100

380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

%
 re

fle
ct

an
ce

 

wavelength (nm) 

Indigo-dyed rayon 

Indigo 1

Indigo 3

Indigo Heated

Indigo 2



84 
 

Wool 

 

 



85 
 

 

 
 

 


	Reflectance analysis and thermochromicity of fabrics dyed with indigo, 6 bromoindigo, 6,6' - dibromoindigo
	Modern dye manufacturing offers a wide variety of colored fabrics.  And with expansion of the fashion industry the demand for new hues and patterns is evolving daily.  Purple was named “the reigning color of the season” of autumn/winter 2012-13 by Vog...

